
J. Fluid Mech. (2000), vol. 418, pp. 297–312. Printed in the United Kingdom

c© 2000 Cambridge University Press

297

Three-dimensional instabilities of steady
double-diffusive interleaving

By O L I V E R S. K E R R
Department of Mathematics, City University,

Northampton Square, London EC1V 0HB, UK

(Received 10 February 2000)

A stratified body of fluid with compensating horizontal temperature and salinity
gradients can undergo an interleaving instability which takes the form of almost
horizontal intrusions. As the amplitude of these intrusions grows they can undergo
secondary instabilities which eventually leads to the mixing of the fluid in the interior
of the intrusions. A previous study of the secondary instabilities focused on two-
dimensional disturbances. These corresponded to experimental observations of that
time which all seemed to indicate that flows were indeed two-dimensional. Some more
recent experiments have shown that the initial secondary instability can make the
flow three-dimensional, with the secondary instabilities taking the form of rolls with
their axes aligned with the direction of the flow in the intrusions. Here we present
a three dimensional stability analysis of steady finite-amplitude intrusions and look
at the circumstances which can lead to the three-dimensional instabilities being more
likely to be observed.

1. Introduction
The presence of horizontal temperature and salinity gradients in a stratified fluid

can lead to the development of instabilities that take the form of almost horizontal
intrusions. These were initially investigated by Stern (1967) who assumed that the
fluxes of heat and salt were dominated by the presence of salt fingers (Stern 1960).
However this almost horizontal layering can also develop when the fluxes are driven
purely by molecular diffusivities and can occur in stratified fluid in containers (Thorpe,
Hutt & Soulsby 1969; Chen, Briggs & Wirtz 1971; and others) as well as unbounded
fluids (Holyer 1983). Holyer noted that as the intrusions grow the vertical temperature
and salinity gradients in their interior become conducive to secondary instabilities.
Indeed the development of instabilities inside the intrusion have been observed
in numerous experiments (for example Tsinober, Yahalom & Shlien 1983; Tanny
& Tsinober 1988) and numerical simulations (for example Schladow, Thomas &
Koseff 1992; Dijkstra & Kranenborg 1998; Kranenborg & Dijkstra 1998). Nearly
all the experiments view the intrusions from the side (i.e. viewed horizontally and
perpendicularly to the horizontal temperature and salinity gradients). The observed
secondary instabilities often seem to be purely two-dimensional. In addition, all the
numerical investigations to date that reveal these secondary instabilities to intrusions
have also been two-dimensional. For this reason the original investigation of Kerr
(1992) into instabilities of double-diffusive intrusions focused on such two-dimensional
instabilities. However, more recently experiments by Chen & Chen (1997) have clearly
shown that secondary instabilities can appear inside a convecting layer that consist



298 O. S. Kerr

of rolls whose axes are perpendicular to those of the primary instabilities. In their
experiments they viewed the convecting fluid from above, clearly revealing the three-
dimensionality of the flow in some experiments. This three-dimensional nature of the
flow is also shown in the exploratory experiments of Biello (1997) where a narrow
slot containing a salt-stratified fluid was heated from one wall. The opposite wall
was transparent and exposed to the ambient air temperature. Horizontal layered
convection occurred in which secondary instabilities in the plane of the walls were
clearly visible. The purpose of the investigation presented here is to extend the previous
analysis to allow for arbitrary orientation of the disturbances to the intrusions and
so give an insight into when these instabilities to intrusions are likely to be two-
dimensional, and when they are likely to be three-dimensional.

The analysis of the stability of intrusions which are growing exponentially with time
poses mathematical difficulties, and so we follow Holyer (1981), in her analysis of the
stability of salt fingers, and Kerr (1992) by examining the stability of intrusions parallel
to the fastest growing modes, but with a thickness chosen so that they have zero
growth rate. In § 2 we will derive the governing equations for the secondary instabilities
to these steady intrusions. The solutions of these linear stability equations will be
investigated in § 3, where we will restrict ourselves to examining situations where there
is no mean vertical temperature gradient and the horizontal salinity gradient is no
bigger than the vertical gradient. It will be found that under the assumptions made
here the preferred instabilities can be both two-dimensional and three-dimensional.
In § 4 we will examine the asymptotics for relatively weak horizontal gradients for
instabilities whose axes are aligned in the direction of the horizontal gradients. This
analysis essentially quantifies the arguments of Holyer (1983) and of Chen & Chen
(1997) who anticipated that instabilities should appear when the vertical gradients
locally are favourable to salt fingering. It also provides a predicted length scale for
the disturbances. The implications of this work for real intrusions are discussed in
the concluding remarks in § 5.

2. Governing equations
We consider the stability of intrusions in an unbounded fluid with constant vertical

and horizontal salinity and temperature gradients. We only consider the case where
there is no nett horizontal density gradient. Holyer (1983) showed that such a fluid
was always unstable to linear perturbations and observed that a single mode could
grow to arbitrary amplitude and still satisfy the full nonlinear equations. The analysis
of, say, the stability of the fastest growing mode of instability poses mathematical
difficulties. We use the same approach as Kerr and look at the stability of steady-state
intrusions whose wavevector is parallel to that of the fastest growing mode.

The velocity, temperature and salinity are given by

u(x, y, z, t) = Û (x, z) + u′(x, y, z, t), (2.1)

T (x, y, z, t) = T0 + xTx + zT z + T̂ (x, z) + T ′(x, y, z, t), (2.2)

S(x, y, z, t) = S0 + xSx + zSz + Ŝ (x, z) + S ′(x, y, z, t), (2.3)

where the background temperature and salinity gradients, Tx, Tz , Sx and Sz are all
constant. The interleaving is given by Û , T̂ and Ŝ while the perturbations to these
are given by u′, T ′ and S ′. The density of the fluid is given by

ρ = ρ0(1− α(T − T0) + β(S − S0)), (2.4)
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Figure 1. Schematic diagram showing the geometry under consideration.

where α is the coefficient of thermal expansion and β the coefficient of density increase
with respect to the addition of salt. The requirement that there is no horizontal density
gradient implies that

αTx = βSx. (2.5)

We assume that these are both positive.
The linearized equations for the perturbations to the interleaving layers are

∂u′

∂t
+ Û · ∇u′ + u′ · ∇Û = −1

ρ
∇p′ + g(αT ′ − βS ′)ẑ + ν∇2u′, (2.6)

∂T ′

∂t
+ Û · ∇T ′ + u′ · ∇T̂ + uTx + wTz = κT∇2T ′, (2.7)

∂S ′

∂t
+ Û · ∇S ′ + u′ · ∇Ŝ + uSx + wSz = κS∇2S ′. (2.8)

Here g is the acceleration due to gravity, ν the kinematic viscosity, κT the diffusivity of
heat, κS the diffusivity of salt and ẑ the unit vector pointing in the vertical direction.

We follow Holyer (1981) and Kerr (1992) and use the inverse of the wave-
number of the fastest growing interleaving mode, |µ|−1, as a length scale for the
non-dimensionalization of these equations, (µ2κT )−1 for time, νκT |µ|3/(gα) for tem-
perature and νκT |µ|3/(gβ) for the salinity. The magnitudes of the temperature and
salinity gradients are measured by three Rayleigh numbers: the horizontal Rayleigh
number H and the vertical temperature and salt Rayleigh numbers RT and RS . These
are defined by

H =
gβSx

νκTµ4
, RT =

gβT z

νκTµ4
, RS =

gβSz

νκTµ4
. (2.9)

These Rayleigh numbers are not mutually independent. They are determined by the
ratios of the vertical and horizontal gradients, along with the slope of the intrusions
and their non-dimensional growth rate. The physical scale of the fastest growing
intrusions can then be determined from the above equations. For further details of
these scalings see Holyer (1983).

We will diverge slightly from Kerr (1992) by aligning our axes with the interleaving
layers (see figure 1), and so the wavevector for the fastest growing mode will only
have one non-zero component parallel to the z∗-axis. This is done to ease finding and
describing the fastest growing modes of instability. Just as for the two-dimensional
case these are often only weakly dependent on the component of the wavevector
perpendicular to the plane of the intrusions.
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All subsequent equations are non-dimensional. The marginally stable interleaving
mode whose wavenumber is parallel to that of the fastest growing mode has velocity,
temperature and salinity given by

Û = (Û∗, 0, 0) cos m̂∗z∗, T̂ = T̂ ∗ cos m̂∗z∗, Ŝ = Ŝ∗ cos m̂∗z∗, (2.10)

where m̂∗, Û∗, T̂ ∗ and Ŝ∗ satisfy

0 = sin θ(T̂ ∗ − Ŝ∗)− m̂∗2Û∗, (2.11)

(H cos θ + RT sin θ)Û∗ = −m̂∗2T̂ ∗, (2.12)

(H cos θ + RS sin θ)Û∗ = −τm̂∗2Ŝ∗, (2.13)

where θ is the angle between the interleaving layers and the horizontal, again see
Holyer (1983) for details. For non-trivial solutions to exist m̂∗ must satisfy

m̂∗4 =
1− τ

2τ
H sin 2θ +

RS − τRT
τ

sin2 θ. (2.14)

Since θ is determined by the fastest growing intrusions, it is clear from this that the
size of the zero-growth-rate intrusions parallel to the fastest growing intrusions is
uniquely defined.

The non-dimensional equations for the perturbations, after dropping the asterisks,
are

1

σ

[
∂u′

∂t
+ Û cos m̂z

∂u′

∂x
− m̂w′Û sin m̂z

]
= −∂p

′

∂x
+ sin θ(T ′ − S ′) + ∇2u′, (2.15)

1

σ

[
∂v′

∂t
+ Û cos m̂z

∂v′

∂x

]
= −∂p

′

∂y
+ ∇2v′, (2.16)

1

σ

[
∂w′

∂t
+ Û cos m̂z

∂w′

∂x

]
= −∂p

′

∂z
+ cos θ(T ′ − S ′) + ∇2w′, (2.17)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (2.18)

∂T ′

∂t
+ Û cos m̂z

∂T ′

∂x
− m̂w′T̂ sin m̂z + u′(H cos θ + RT sin θ)

+ w′(RT cos θ −H sin θ) = ∇2T ′, (2.19)

∂S ′

∂t
+ Û cos m̂z

∂S ′

∂x
− m̂w′Ŝ sin m̂z + u′(H cos θ + RS sin θ)

+ w′(RS cos θ −H sin θ) = τ∇2S ′. (2.20)

The solutions to these can be expressed in Floquet form:

(u′, v′, w′, p′, T ′, S ′)

= exp [λt+ i(kx+ ly + mz)]

∞∑
n=−∞

(un, vn, wn,−ipn, Tn, Sn) exp (inm̂z). (2.21)

Note the inclusion of a factor of −i before the pn to ensure the equations now have
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real coefficients. This expansion gives rise to the set of equations for each n:

1

σ

[
λun − kÛ

2
(un+1 − un−1) +

m̂Û

2
(wn+1 + wn−1)

]

= −kpn + sin θ(Tn − Sn) + (k2 + l2 + (m+ nm̂)2)un, (2.22)

1

σ

[
λvn − kÛ

2
(vn+1 − vn−1)

]
= −lpn + (k2 + l2 + (m+ nm̂)2)vn, (2.23)

1

σ
[λwn − kÛ

2
(wn+1 − wn−1)

]

= − (m+ nm̂)pn + cos θ(Tn − Sn)− σ(k2 + l2 + (m+ nm̂)2)wn, (2.24)

0 = kun + lvn + (m+ nm̂)wn, (2.25)

λTn + (H cos θ + RT sin θ)un + (−H sin θ + RT cos θ)wn

−kÛ
2

(Tn+1 − Tn−1) +
m̂T̂

2
(wn+1 + wn−1) = −(k2 + l2 + (m+ nm̂)2)Tn, (2.26)

λSn + (H cos θ + RT sin θ)un + (−H sin θ + RT cos θ)wn

−kÛ
2

(Sn+1 − Sn−1) +
m̂Ŝ

2
(wn+1 + wn−1) = −τ(k2 + l2 + (m+ nm̂)2)Sn. (2.27)

These can be expressed in terms of infinite matrices

Ax = λBx, (2.28)

where x is a column vector which is the transpose of (. . . , un, vn, wn, pn, Tn, Sn, . . .) and
B is a diagonal matrix with either 1 or 0 in its diagonal entries. The eigenvalues and
corresponding eigenvectors of a truncated form of this matrix can be calculated. The
level of truncation of the matrix system was chosen to ensure an appropriate degree of
accuracy. Typically the truncation level was chosen so that the eigenvectors contained
6 × 25 terms, although more terms were used for accuracy checking and when the
disturbances became smaller. Here routines from the NAG numerical library were
used. In each case the mode whose eigenvalue has the largest real part was identified
as the most unstable mode.

3. Results
In this section we will assume that the fluid has Prantl number σ = 10 and salt/heat

diffusivity ratio τ = 1/100. These are the values used in Kerr (1992) and are used
here for compatibility. Calculations have also been done with σ = 7 and τ = 1/80
which would be more appropriate in a laboratory. The results of these two sets of
calculations show little qualitative difference. We shall also restrict ourselves to the
case RT = 0 with RS < 0 in this section since this corresponds to nearly all laboratory
experiments and numerical simulations where layered convection has been observed.

Since the marginally stable interleaving mode chosen as the background state is
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Figure 2. Contour plots of the fastest growth rate as functions of k and l for |H/RS | = 1/5. The
solid contours start from 0 with spacing 0.1, the long-dashed lines are for negative growth rate with
spacing 0.1, and the short-dashed contours near the peak have spacing 0.01.

parallel to the fastest growing interleaving mode they do not interact via the nonlinear
terms. This means that the fastest growing mode is still a mode of instability which
will appear from the stability analysis. For any other mode to be observed it would
have to have a growth rate at least as fast as this one. Thus we shall follow Kerr
(1992) and look for parameter regimes where the fastest growing mode of instability
has a growth rate as least as big as that of the fastest growing interleaving mode, and
define marginal stability to be the case where the growth rates are the same.

The first example we will look at has |H/RS | = 1/5 and RT = 0. The absence of a
vertical temperature gradient and the vertical salinity gradient being stronger than the
horizontal gradient is typical of experiments. When the fastest growing mode distinct
from the interleaving mode is found by optimizing k, l and m it is determined that the
growth rate does not depend strongly on m. This is an indication that the instabilities
are essentially localized in the core of the intrusions with only weak linking between
adjacent layers. For the sake of simplicity we will concentrate on presenting the results
of varying k and l. In all cases the solutions have also been optimized by varying m
even if not explicitly stated.

The growth rate for secondary instabilities as a function of k and l is shown in
figure 2 for the case where the amplitude of the interleaving is such that there first
appears a marginally stable mode distinct from the interleaving mode. Due to the
symmetry of the problem we can restrict ourselves to the case where both k and l are
non-negative. The plots for other quadrants can be found by reflecting these contours
in the axes. There is a sharp peak at the origin which corresponds to the fastest
growing interleaving mode. As we are using axes aligned with this fastest growing
intrusion this mode has k = l = 0. Surrounding this peak is an approximately elliptical
ring where there is strong growth. This has a maximum on the k-axis at k = 3.268
and a saddle point on the l-axis at l = 3.775. Thus the fastest growing instabilities
in this case are just the two-dimensional instabilities investigated previously in Kerr
(1992).

The amplitude of the background intrusions used for figure 2 that gives rise to the
two-dimensional instabilities with the same growth rate as the interleaving mode is
Û = ψ̂m̂ = 0.09558 m̂. Here ψ̂ is the amplitude of the stream function that was used
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Figure 3. Graph of the magnitude of the interleaving ψ̂ corresponding to marginal instability
for (a) the two-dimensional mode, l = 0 and (b) the three-dimensional mode, k = 0. The inset
shows an enlargement of the region where the two lines cross, with the regions where two- and
three-dimensional instabilities are most unstable indicated.

to describe the amplitude of the intrusions in Kerr (1992). For the sake of consistency
we will also use ψ̂ here as a measure of the amplitude of these steady intrusions. If
the amplitude of the intrusions is increased to ψ̂ = 0.10008 then the growth rates
all the way around the almost elliptical ridge around the central peak exceed that
of the interleaving mode. This is only a small increase in the amplitude compared
to the two-dimensional l = 0 mode. The relative closeness of the point of onset of
the different modes of instability may have consequences for which instabilities are
observed in real situations where there may be geometrical constraints on the possible
modes of instabilities which would favour the three-dimensional modes. This will be
discussed later.

The results for |H/RS | = 1/5 are qualitatively similar to those for nearly all values
of the ratio |H/RS |. In figure 3 the amplitude of the background intrusions which
support modes with growth rate equal to the fastest growing interleaving mode
are shown for a large range of the ratio |H/RS |. There are two lines plotted, one
corresponding to modes with l = 0 and one to modes with k = 0. These are very
close for all points on the graphs, and are often hard to distinguish. For nearly all
values of |H/RS | the two-dimensional mode with l = 0 occurs first and is the fastest
growing mode of instability. However, when |H/RS | = 0.9381 the two lines cross over.
This section is enlarged in the inset in the figure. The contour plots for the growth
rates at this transition point as functions of k and l are shown in figure 4. Here it can
be seen that the peak of the growth rate surface is almost circular with no discernible
single maximum at this resolution. The abrupt change in the contour spacing in the
top right corner of figure 4 is due to a change in the mode with fastest growth rate
to one which is less sensitive to changes in k and l.

One feature of the three-dimensional modes which differs from the two-dimensional
modes is the size of the instabilities. The variation in the horizontal wavenumber,
l, for the three-dimensional marginally stable modes is shown by the solid line in
figure 5. This shows a steady rise in l as |H/RS | decreases. This rise continues beyond
the values shown here, but a combination of the decreasing size of the instabilities
which requires a much larger truncation in the matrix equation, and the rapidly
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Figure 4. Contour plots of the fastest growth rate as functions of k and l for |H/RS | = 0.9381. The
solid contours start from 0 with spacing 0.1, the long-dashed lines are for negative growth rate with
spacing 0.1, and the short-dashed contours near the peak have spacing 0.01.
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Figure 5. Graph of the horizontal wavenumber l for the marginally stable three-dimensional mode,
k = 0, as a function of the gradient ratio |H/RS | (solid line). Superimposed is the asymptotic
prediction from § 4 (dashed line), and k as a function of |H/RS | from Kerr (1992) (dotted line).

increasing sensitivity of the fastest growth rate and the corresponding wavenumbers
to variations in the value of ψ̂, lead to a deterioration in the numerical accuracy.
Superimposed on this graph is the asymptotic prediction from the next section which
is a straight line of slope −1/3 (the dashed line). The horizontal component of the
wavenumber in the two-dimensional case, shown by the dotted line, increases more
slowly as |H/RS | decreases. For lower values of |H/RS | than shown there is a transition
after which it subsequently declines (Kerr 1992), indicating that the horizontal extent
of the instabilities increases, in contrast to the three-dimensional case where they get
ever smaller.

The graph of the wavenumber of the marginal modes with k = 0 has one other
visible feature of note. Towards the right-hand end there is a small jump in the
optimum wavenumber. This is not the only point where there is a jump, but the only
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Figure 6. Plots of the marginally stable perturbations in the (y, z)-plane for |H/RS | = 1, showing
(a) streamlines, (b) u′, (c) T ′ and (d) S ′. The solid lines show contours for 10%, 30%, 50%, 70%
and 90% of the maximum values and the dashed lines show the corresponding negative contours.

one visible at the resolution of this graph. The reason behind this small jump can
be appreciated from the plots of the three-dimensional instabilities shown in figures
6–8 for |H/RS | = 1, 1/5 and 1/20 respectively. These show the streamlines of the
instability in the (y, z)-plane, along with u′, T ′ and S ′. The disturbances are all located
along the planes where the vertical density gradient is most reduced. Three of these
regions are shown in figure 6 and two in each of figures 7 and 8. One clear difference
between the cases with |H/RS | = 1 and 1/20 and the one with |H/RS | = 1/5 is that in
the latter case if the perturbations are shifted vertically by the height of an intrusion
the picture is unaltered, while in the other cases the signs of the perturbations would
be reversed. Which of the cases holds changes several times as |H/RS | decreases.
As has already been mentioned, the growth rate of these instabilities is only weakly
dependent on the third component of the wavenumber, m. Changing m changes the
relative phases of adjacent rows of instabilities. The instabilities are essentially local
and are little influenced by those in other rows. When there is a transition between
the two possible cases the basic instabilities are little affected, hence the very small
jump in the optimum l. As |H/RS | decreases the instabilities communicate even less
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Figure 7. As figure 6 but for |H/RS | = 1/5.

between rows, and so when there is a second transition between |H/RS | = 1/5 and
1/20 the effect is even smaller and the jump is not visible.

The sense of the circulation in the streamline plots in figures 6–8 is clockwise
around the positive maxima. All these plots show features that would be expected
from a salt-fingering instability growing in the region of the intrusions where the
vertical density gradient is most reduced. When intrusions are driven by molecular
diffusivities they have the general slope indicated in figure 1. Fluid in intrusions
moving from left to right tends to be colder and fresher than the surrounding fluid,
while fluid moving from right to left tends to be hotter and saltier. For salt fingering
to occur the intrusions must grow sufficiently for hot salty water to lie over cooler
fresher water. This will occur in the layers where there is a leftwards flow above and
a rightwards flow below. Hence in a region of downflow in these three-dimensional
instabilities there will be a local increase in the salinity and temperature, and because
the fluid is moving from a leftward travelling region into a rightward travelling
region its velocity perturbation u′ will be negative. Conversely, if the flow is upwards
then the temperature and salinity perturbations will be negative and the velocity
perturbation will be positive. These features are shown in figures 6–8 where regions
in the streamline plots (a) with a positive peak to the left and a negative peak to
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Figure 8. As figure 6 but for |H/RS | = 1/20.

the right which correspond to upflows all show positive peaks in (b) u′, and negative
peaks in (c) T ′ and (d) S ′.

Batchelor & Nitsche (1991) looked at convection in an unbounded fluid with
the density varying sinusoidally in the vertical direction. A novel feature of their
results is that a long-wavelength instability was found, with the denser layers of
fluid sliding towards regions where the fluid had moved down and the lighter layers
sliding towards the regions where the fluid had risen. The absence of a mean vertical
density gradient results in there being no restoring force on regions of fluid which are
displaced vertically. When such a gradient was present in their analysis, these modes
of instability were not found. In the problem analysed here there is always a stable
mean vertical density gradient superimposed on the vertical sinusoidal variations, and
no equivalent long-wavelength modes of instability were found.

4. Asymptotics for weak horizontal gradients
The asymptotic analysis of the two-dimensional instabilities in the limit of weak

horizontal gradients (i.e. when H is small compared to the the larger of |RT | and
|RS |) is given in Kerr (1992). There it was found that instabilities developed along the
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line of maximum shear and maximum change to the vertical temperature and salinity
gradients. It was clear from the local Richardson numbers that these instabilities were
not shear driven, but were essentially localized double-diffusive intrusions. Although
the previous results have indicated that in the limit of weak horizontal gradients
this two-dimensional mode of instability dominates, we will look here at the three-
dimensional modes of instability (k = 0) in this same limit. This will enable us to
determine the relative importance of these two modes. It will also enable us to quantify
the arguments of Holyer (1983) and Chen & Chen (1997) concerning the possible
onset of localized double-diffusive convection in the core of the intrusions due to
the change in the vertical temperature and salinity gradients, giving, for example,
predictions for the wavelength of the instabilities.

When the horizontal gradients become relatively weak both the vertical and hor-
izontal Rayleigh numbers become large as the physical size of the fastest growing
modes, which is used in defining the Rayleigh numbers, tends to increase. However
the vertical Rayleigh numbers increase at a faster rate than H . We follow Kerr and
use ε = H−1 as an expansion parameter. As ε decreases both RT and RS (if non-
zero) grow as ε−2 so the ratio of the horizontal gradients to the vertical gradients
decreases as ε. The angle the intrusions make with the horizontal, θ, is at leading
order proportional to ε, while the vertical wavenumber, m̂ remains O(1).

We shall find that the conjectures of Holyer (1983) and Chen & Chen (1997) that
instabilities first appear when there is a region where the local vertical salinity and
temperature gradients satisfy the condition for salt fingers is, to a first approximation,
correct. This requires an O(1) change to the background vertical gradients which will
require the leading-order scalings Û = O(ε−1), T̂ = O(ε−2) and Ŝ = O(ε−2). The most
important difference between the two-dimensional case and the three-dimensional
case under consideration here is that the dimension of the marginal instabilities tends
to zero as ε → 0, unlike the two-dimensional case where the vertical scale remained
O(1) while the horizontal scale increased as ε−1. For the moment we shall just say that
the horizontal and vertical scales are proportional to εa and εb respectively, with both
a and b positive, and that they are again localized along the regions of maximum
change in the vertical temperature and salinity gradients.

We define rescaled quantities

l = ε−al∗, z = π/(2m̂) + εbz∗, Û = ε−1Û∗, T̂ = ε−2T̂ ∗, Ŝ = ε−2Ŝ∗,

H = ε−1, RT = ε−2R∗T , RS = ε−2R∗S , θ = εθ∗.

}
(4.1)

Here the origin in the vertical z-direction has been shifted to the centre of the region
of instabilities. Substituting this rescaling into (2.15)–(2.20) leads to the following set
of equations for the marginally stable perturbation:

1

σ
[qu′ + ε−1m̂u′Û∗] = εθ∗(T ′ − S ′)− ε−2al∗2u′ + ε−2b ∂

2u′

∂z∗2
, (4.2)

1

σ
[qv′] = −iε−al∗p′ − ε−2al∗2v′ + ε−2b ∂

2v′

∂z∗2
, (4.3)

1

σ
[qw′] = −ε−b ∂p

′

∂z∗
+ (T ′ − S ′)− ε−2al∗2w′ + ε−2b ∂

2w′

∂z∗2
, (4.4)

iε−al∗v′ + ε−b
∂w′

∂z∗
= 0, (4.5)
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qT ′ − ε−2m̂w′T̂ ∗ cos εbm̂z∗ + ε−1u′(1 + θ∗R∗T ) + w′(ε−2R∗T − θ∗)
= −ε−2al∗2T ′ + ε−2b ∂

2T ′

∂z∗2
, (4.6)

qS ′ − ε−2m̂w′Ŝ∗ cos εbm̂z∗ + ε−1u′(1 + θ∗R∗S ) + w′(ε−2R∗S − θ∗)
= τ

(
−ε−2al∗2S ′ + ε−2b ∂

2S ′

∂z∗2

)
. (4.7)

Here q is the growth rate of the fastest growing intrusions (see Holyer 1983). The
relative scales of the perturbations have not yet been established. However it is clear
that the terms involving q should not be present at leading order since q = O(1) at
marginal stability. From (4.2) we can see that size of u′ is at least a factor of ε smaller
than T ′ and S ′, and so the terms involving u′ in (4.6) and (4.7) can be neglected.
When all these terms are omitted, and the cosine terms expanded as a power series
in z∗, the resulting equations at leading order can be written as

0 = −iε−al∗p′ − ε−2al∗2v′ + ε−2b ∂
2v′

∂z∗2
, (4.8)

0 = −ε−b ∂p
′

∂z∗
+ (T ′ − S ′)− ε−2al∗2w′ + ε−2b ∂

2w′

∂z∗2
, (4.9)

iε−al∗v′ + ε−b
∂w′

∂z∗
= 0, (4.10)

w′(ε−2(R∗T − m̂T̂ ∗)− ε−2+2bm̂T̂ ∗(εbm̂z∗)2/2) = −ε−2al∗2T ′ + ε−2b ∂
2T ′

∂z∗2
, (4.11)

w′(ε−2(R∗S − m̂Ŝ∗)− ε−2+2bm̂Ŝ∗(εbm̂z∗)2/2) = τ

(
−ε−2al∗2S ′ + ε−2b ∂

2S ′

∂z∗2

)
. (4.12)

Lastly, by dividing (4.12) by τ, subtracting it from (4.11) and defining a new quantity
T † = T ′ − S ′, equations (4.9), (4.11) and (4.12) are replaced by the pair of equations

0 = −ε−b ∂p
∂z∗

+ T † − ε−2al∗2w′ + ε−2b ∂
2w′

∂z∗2
, (4.13)

w′(ε−2((R∗T − m̂T̂ ∗)− (R∗S − m̂Ŝ∗)/τ)− ε−2+2bm̂(T̂ ∗ − Ŝ∗/τ)(m̂z∗)2/2)

= −ε−2al∗2T † + ε−2b ∂
2T †

∂z∗2
. (4.14)

These last two equations, along with (4.8) and (4.10) are essentially equivalent to the
equations for penetrative convection with a cubic vertical temperature profile studied
by Matthews (1988) when the growth rate is zero. All that is needed now is to find
the correct rescalings. One result that we can apply immediately from Matthews is
that the magnitude of horizontal and vertical scales of the instabilities is the same,
hence a = b.

We have yet to determine the behaviour of T̂ ∗ and Ŝ∗ except to say that they are
O(1) at leading order. We will pose an expansion

T̂ ∗ = T̂ ∗0 + εcT̂ ∗1 + · · · , Ŝ∗ = Ŝ∗0 + εcŜ∗1 + · · · . (4.15)

In order to recover Matthews’ equations we must have a balance between the constant
and quadratic term multiplying w′ in (4.14). This implies that either a = 0 or that at
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leading order the constant term was zero. If a were zero then (4.13) would imply that
w′ and T † were of the same magnitude, but this is clearly not the case in (4.14) and
so we must discount this possibility. Hence we must have

(R∗T − m̂T̂ ∗)− (R∗S − m̂Ŝ∗)/τ
= (R∗T − R∗S/τ)− m̂(T̂ ∗0 − Ŝ∗0/τ)− εcm̂(T̂ ∗1 − Ŝ∗1/τ) + · · · = O(ε2a), (4.16)

giving

R∗T − R∗S/τ = m̂(T̂ ∗0 − Ŝ∗0/τ) (4.17)

and

c = 2a. (4.18)

We can now rewrite (4.14) as

−w′ε−2+2a(m̂(T̂ ∗1 − Ŝ∗1/τ)− (R∗T − R∗S/τ)(m̂z∗)2/2) = −ε−2al∗2T † + ε−2a ∂
2T †

∂z∗2
.

(4.19)

Since we need balances between the terms involving w′ and T † in both (4.19) and
(4.13) we see that

a = 1/3. (4.20)

This tells us that in contrast to the two-dimensional asymptotics of Kerr (1992) the
size of the instabilities decreases as the ratio of the horizontal gradients to the vertical
gradients decreases.

If we rescale all the variables we can obtain an exact correspondence with the
equations of Matthews (1988) restricted to two dimensions, and so we can use his
results to give the horizontal wavenumber for the onset of instability. This rescaling
gives

l = kcε
−1/3

(
m̂2(R∗S/τ− R∗T )

6Rc

)1/6

, (4.21)

where kc = 1.26 and Rc = 88.0 are the critical wavenumber and Rayleigh number
found by Matthews. Thus on the logarithmic plot of figure 5 the wavenumber for
these disturbances should approach a line of slope −1/3 as the Rayleigh number
ratio decreases. This is shown by the dashed line, showing good agreement with the
numerical results.

The other possibility is that the initial instability is oscillatory. By a similar argument
to the above it may be anticipated that such instabilities would grow in regions where
the local modified gradients satisfied the conditions for overstable instabilities. In such
a case the more complicated analysis of Walton (1982) for the structure of oscillatory
instabilities in a fluid with varying vertical salinity gradients would be appropriate.
This would be the case when the amplitude of the interleaving satisfied

RT ± m̂T̂ =
σ + τ

σ + 1
(RS ± m̂Ŝ ). (4.22)

By comparing the amplitude of the intrusions required for this instability to the
amplitude for a salt-fingering instability given by (4.17) we find salt-finger convection
will occur first if RT = 0. However there are other parameter regimes where the initial
instability can indeed be oscillatory.
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5. Conclusion
We have looked at the instability of steady double-diffusive intrusions which

are parallel to the fastest growing modes. We have found that the fastest growing
instabilities nearly always consist of modes which are independent of the horizontal
coordinate in the direction perpendicular to the horizontal temperature and salinity
gradients driving the intrusions, and which were investigated in Kerr (1992). Only
for relatively strong horizontal gradients were instabilities perpendicular to these
preferred. In no case was it found that instabilities with other orientations were faster
growing. This would seem to give reassurance that many of the experiments where the
primary or sole method of visualization consists of looking perpendicularly to these
gradients have not missed any important dynamics, and that the two-dimensional
numerical simulations are realistic. However, just as with the results of Kerr, the
limitations of the current analysis should be borne in mind.

The analysis here looks at the stability of a steady finite-amplitude intrusion that
is parallel to the fastest growing mode. This steady mode is clearly not the one that
an observer would expect to see. Kerr (1992) observed that the growth rate of the
secondary modes of instability significantly exceeds that of the fastest growing mode
for amplitudes of the intrusions not much bigger than the marginal modes considered,
and so these instabilities are likely to be important even for the fastest growing modes.
This holds true for the three-dimensional instabilities examined here. However, the
difference between the growth rates of the modes with l = 0 and k = 0 are never that
great, and so it is possible that when it is the fastest growing modes that are present
the rôles may be reversed. This small difference in the stability of the l = 0 and k = 0
modes also backs up Kerr’s conclusion that shear is not an important mechanism in
the development of the secondary instabilities as the shear terms are absent in the
k = 0 case.

The other limitation of this analysis when looking at laboratory experiments and
numerical simulations is that intrusions are never infinite in length. The layered
convection observed is limited in size either by the extent of the apparatus or the
time that instabilities take to grow. Thus the two- and three-dimensional secondary
instabilities may not be free to select the fastest growing modes of instability. If the
container is wider in the direction perpendicular to the horizontal gradients then this
may favour the three-dimensional modes of instability. This is certainly true in the
experiments of Biello (1997).

An additional effect that may favour the three-dimensional instabilities in experi-
ments is that if the temperature of a wall bounding a stratified fluid is raised quickly,
then initially the horizontal gradients of temperature and salinity can be greater that
the vertical gradients even if they subsequently become smaller. We have seen that
this may favour the initial formation of the three-dimensional modes, which once
established may inhibit the growth of the two-dimensional instabilities when the rel-
ative size of the horizontal gradients reduces and the two-dimensional disturbances
would otherwise be favoured. This is even more likely to be the case near the hori-
zontal boundaries in experiments in rectangular enclosures. Near these boundaries
the salinity gradient is usually weaker due to the walls being impermeable to salt.

It is clear from the experiments of Chen & Chen (1997) and Biello (1997) that
three-dimensional disturbances do appear in double-diffusive intrusions driven by
horizontal temperature and salinity gradients. Unfortunately the ratios of the local
Rayleigh numbers associated with the onset of these three-dimensional instabilities
in these experiments is not clear. In order to get a better understanding of when they
occur in finite enclosures it may be necessary to conduct some fully three-dimensional
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numerical simulations, or to perform a stability analysis of steady finite-amplitude
convection in a more realistic geometry. The stability of finite-amplitude convection
in a rectangular container to two-dimensional disturbances has been addressed by
Tsitverblit & Kit (1993), but not to three-dimensional ones. Both of these avenues of
research are beyond the scope of this paper.
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